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Text Analytics and Fake News

“Civilization is in a race between education and
catastrophe. Let us learn the truth and spread it as far
and wide as our circumstances allow. For truth is the
greatest weapon we have.”

- H. G. Wells

OED word of the year for 2016: Post-Truth
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Introduction: KAPS Group

Network of Consultants and Partners — “Hiring”
Strategy consulting — Text Analytics, Social Media, Integration
Text Analytics Smart Start, Next Level
Development - Taxonomy/Text Analytics, Social Media
TA Train (1 day to 1 month)
Strategic personalized overview to hands on training

TA Audit —Content, semantic resources, tech, info needs &
behaviors

Partners —Synaptica, SAS, IBM, Smart Logic, Expert Systems,
Clarabridge, Lexalytics, BA Insight, BiText

Clients: Genentech, Novartis, Northwestern Mutual Life, Financial
Times, Hyatt, Home Depot, Harvard, British Parliament, Battelle,

Amdocs, FDA, GAO, World Bank, Dept. of Transportation, etc.
Presentations, Articles, White Papers — .


http://www.kapsgroup.com/

{%Kﬁ?ﬁ.ﬁ.r@up

Atreasure trove of technical detail, likely to become a definitive

source on text analytics — Kirkus Reviews Information Today Table
Book Signing at Reception — 17:15-18:30 Info Today table
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Text Analytics and Fake News
What is Text Analytics?

Text Mining — NLP, statistical, predictive, machine learning
Entity / Fact Extraction
Sentiment Analysis
Auto-categorization
Training sets, Terms, Rules
Boolean— Full search syntax — AND, OR, NOT
Advanced — DIST(#), ORDDIST#, PARAGRAPH, SENTENCE
Deep Learning — neural nets — big and fast enough for patterns
Good on images, not concepts
Deep Learning is a dead end — black box, tricks, fast data

No common sense and no strategy to get there
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Text Analytics and Fake News
What is Fake News?

Types of Fake News — sliding scale
Information out of context, Opinion, Misinformation
Alternative facts, Lies
Fake people, automated bots
Twitter — most of top 20 accounts are bots — 1,300 a day
Hunter bots — impersonate people to discredit them
Popularity — Google — can be manipulated
Search for Holocaust and get Neo-Nazi

Two drivers: make money and manipulate people
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Text Analytics and Fake News
What is Fake News? Stories

Ad for Giuliani — support me because | took good care of my
mistress

Words change meaning — globalist for Jewish bankers
Fine line between comedy/satire and fake news

Las Vegas shooting — Google and Facebook — top stories were
fake — some from known sites — liberal anti-Trump

Search engines more trusted than regular news

Algorithms designed to favor popular, get most likes and
comments
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Text Analytics and Fake News
Fake News Techniques
“Tens of thousands of fraudulent Clinton votes found in Ohio
warehouse”
Add: made up person — Randall Prince, electrician
Photo of a ballot box (from UK), Label person in photo as Prince
Add story details — plan to substitute boxes for real ones

Got 6 mil views, generated $1,000 hr in ads

Russians posted to protest a recent election — 2,000 bots
attacked — complained posts were porno

Twitter is worse — short, automated
Confusion — fake news is news you don't like
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Text Analytics and Fake News
Fake News: In Context

General — blurring lines opinion & facts, content and ads

Growth of fringe groups — finding each other, finding “facts” that
support them — from hate groups to science deniers

Polarization and echo chambers
Confirmation bias
Network effects reward extremists, unfriend = bubble

Politics becomes like race/religion — won'’t let my daughter marry a
liberal

The Internet is making us stupid
This could be the first really major crisis of information age

Getting worse — future = more info, more automation, virtual
reality, blurring lines between real and imagined
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Text Analytics and Fake News
Proposed Solutions - Partial

Debunking
No money — fake news seen by millions, debunk = 1,000’s
Only facts, but arguments won with emotion and authority
Effects linger — George Lakoff — Don’t Think of an Elephant
Financial: block ads
Advertisers not shunning like porno and gambling — yet?
Doesn’t deter political motivations
Technical: tool to discover “sock puppets”, multiple sites/accounts
Track and block known sites — URL based — abcnews.com.co, etc.
Automated systems, machine learning, algorithms
Not smart enough (68% accuracy), can be manipulated
Black box — Watson — don’t know how it works
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Text Analytics and Fake News
Case Study — Hybrid Analysis of News

Inxight Smart Discovery

Multiple Taxonomies
Healthcare — first target
Travel, Media, Education, Business, Consumer Goods,
Content — 800+ Internet news sources
5,000 stories a day
Combination of Features — Categorization rules, Entity extraction,
terms, Boolean, filters, facts
Application — Editors get categorized results
Faster than human review
Smarter than automatic solutions
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Text Analytics and Fake News

Pronoun Analysis: Fraud Detection; Enron Emails
Patterns of “Function” words reveal wide range of insights
Function words = pronouns, articles, prepositions, conjunctions, etc.

Used at a high rate, short and hard to detect, very social, processed
in the brain differently than content words

Areas:. sex, age, personality — individuals and groups, power-status,
Lying / Fraud detection: Documents with lies have
Fewer and shorter words, fewer conjunctions
More use of “if, any, those, he, she, they, you”, less “I”
More positive emotion words
Current research — 76% accuracy in some contexts
Text Analytics can improve accuracy and utilize new sources
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Text Analytics and Fake News
Deep Text Solution - All of the Above

Need an all of the above approach — Technical, Financial,
Linguistic, Categorical

Mainstream news works very hard to validate — Facebook needs
to do it too

Facebook Initiatives
Need humans — adding 3,000 editors — hybrid solution
Also using external organizations — Politifact, Factcheck.org, Snopes

Text Analytics — Meaning based
Depth of intelligence and speed of automated
Human-machine partnership = smarter humans.
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Text Analytics and Fake News
Deep Text Solution — Filters and Fakeness Score

Module 1 — database of known sites,
Block sites & ads

Module 2 — Deep Learning — linguistic/social patterns
Function words, emotional intensity, abusive language
Writing style and posting activity
Poorer quality, shorter posts — often voted down

Module 3 — Flexible categorization rules
Subject — political, controversial topics
Emotion and motivation taxonomies

Fakeness Categorization Score — feed to humans
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Text Analytics and Fake News
Solutions That Work

All that helps but ultimate solution is education of society

Who would believe Clinton had a child prostitute ring in a pizza
place?
Need to educate people to spot fake news and give them tools
Real Time Debunking

Automated context

Linked Data — quick check — needs to be smarter
Smart Reader / research assistant— see Deep Text

Automate some tasks, enrich others

Ongoing war — as we develop better techniques, fakes will adapt
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Text Analytics and Fake News
Resources

Conferences — Information Today in Wash. DC
KMWorld, Taxonomy Boot Camp
Text Analytics Forum — New!
Politifact.org / Google Fact Check / Factcheck.org
Snopes — from urban legends to fake news

Books:

Weaponized Lies: How to Think Critically in the Post-Truth
Era by Daniel J. Levitin

Don’t Think of an Elephant by George Lakoff
Post-Truth: How Bullshit Conquered the World by James Ball
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Text Analytics and Fake News
Conclusions
Fake News is real and really serious
Undermine democracy, communication, civilization?

Multiple factors driving more fake news — money, political, ease of
technology & scale, it's “fun”

Solutions require all of the above
Major initiatives from Facebook, Twitter, etc.
Multiple levels — technical, business, government

Hybrid human-machine solutions — using text analytics
Ultimate answer is better education




Questions?
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